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Outline

• Background and challenges

• Fitting nonstationary sea clutter data

• Target detection by fully characterizing the corre-
lation structure of sea clutter

• Target detection by cascade multifractal modeling
of sea clutter

• Conclusions
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Sea clutter

Backscattered returns from a patch of the sea surface
illuminated by a transmitted radar pulse

Complexities: turbulent wave motions + multipath propagation
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Source of sea clutter data

• 14 sea clutter measurements from Prof. Simon Haykin; each
measurement contains 14 range bins, a few bins hit a small target

• Each measurement was made under certain weather and sea
conditions (wave height varied from 0.8 m to 3.8 m; wind conditions
varied from still to 60 km/hr)
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Significance and Challenges of sea clutter modeling

• Sea clutter analysis is an important theoretical problem

• Target detection within sea clutter is important to coastaland national

security, to navigation safety, and to environmental monitoring

• CouldSat: Sea clutter removal may help improve cloud system

modeling

• Over a thousand papers have been published. Numerous methods and

new concepts including chaos and fractal theory have been tried to

model sea clutter

• By now, the nature of sea clutter is still not well understood

• Simple and effective models for sea clutter are highly desirable
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Why sea clutter modeling is difficult? — Nonstationary!
(i) Data viewed at different time and scales appear very different.

(ii) Subplot (e): signals cannot be characterized as ideal random fractals or

autoregressive (AR) processes.
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Failure of direct distributional analysis of sea clutter

(i) Distr. tried: Weibull, log-normal, K, compound Gaussian, log-Weibull

(ii) K disrt. f (x) =
√

2ν√
µΓ(ν)2ν−1

(√

2ν
µ x

)ν
Kν−1

(√

2ν
µ x

)

, x≥ 0

is among the best; but the fitting can be poor
— Can’t help with target detection — Culprit: data is nonstati onary!
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Our approach to fit nonstationary sea clutter data

• Denote the sea clutter amplitude data byy(n),n = 1,2, · · ·

• Denote the differenced data of sea clutter by,

x(n) = y(n+1)−y(n), n = 1,2, · · ·

• Fit x(n),n = 1,2, · · · usingTsallis distribution .

• Why such a strategy works?

– Consider white Gaussian noise,u(i), i = 1,2, · · · . It is stationary!

– Standard Brownian motion (or random walk):v(n) = ∑n
i=1 u(i) is

nonstationary, because the variance ofv(n) is proportional to

(time) n

– K-distr. can be derived by assuming a random walk model for

scatterers!
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Tsallis distribution

• Obtained by maximizing the Tsallis entropy under 2 constraints.

• The distr: when 1< q < 3,

p(x) =
1
Zq

[1+β(q−1)x2]1/(1−q),

whereZq is a normalization constant.

• Whenq = 1 & 2, it reduces to the normal & Cauchy distr.

• When 5/3 < q < 3, the distribution is heavy-tailed

• Significance: provides foundation for the heavy-tailed andα-stable

distr.
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Heavy-tailed distribution

• Pareto distr:P[X ≥ x] =
(

b
x

)α
, x≥ b > 0, α > 0

whereα andb are the shape & the location parameters.

• In the discrete time case, we have Zipf distr.

• Heavy-tailed distr:P[X ≥ x] ∼ x−α, x→ ∞

• Whenα < 2, the variance and all higher than 2nd-order moments do

not exist.

whenα ≤ 1, the mean also diverges.

• Cauchy distr (also called Lorentzian distr) with PDFf (x) = l
π(l2+x2)

is an example withα = 1
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Stable laws and Levy motions

• Paul Levy (teacher of Mandelbrot, theFather of fractal geometry)

posed such a question: When will the distribution for the sumof the

random variables and those being summed have the same functional

form?

• Stable laws are the unique class of distributions that have such a

property.

• Stable laws include Gaussian distr as a special case; in the

non-Gaussian case, the distributions are heavy-tailed

• Levy motions: random walk processes whose increments are

characterized by stable laws
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The meaning of stable laws and Levy motions

• Normal distr & central limit theorem describe daily, mundane life

— Many lucky people live through such a life happily.

• Occasionally one has to take on an unplanned journey, duringwhich

many unexpected and exciting (or terrible) things happen.

• Such a journey could be related to hate, love, patriotism, and so on,

as illustrated by numerous classic poems, fictions and movies.

• Kolmogorov was pondering: Stable laws with infinite variance

should be observed more often than the normal distr. In reality ...?

• Abundant examples of heavy-tailed distributions have beenfound:

Amount of Internet traffic, topology of networks (eg, power-law

networks), distr. of the size of the power outages, ...

• Fundamental question: How do stable laws arise?
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Deriving Tsallis distr by maximizing Tsallis entropy

• Tsallis entropy aims to characterize a type of motion whose

complexity is neither regular nor fully chaotic/random, byemploying

a parameterq, that best describes the motion.

• It’s defined byHT
q = 1

q−1

(

1−∑m
i=1 pi

q
)

.

• In the continuous case, it isHT
q = 1

q−1

(

1−
R ∞
−∞ d( x

σ )[σp(x)]q
)

.

• It reduces to the Shannon entropy whenq→ 1.

• Tsallis distr can be derived by maximizing Tsallis entropy under 2

constraints,

– Total prob. is 1:
R ∞
−∞ p(x)dx= 1.

– Second normalized moment is known:
R ∞
−∞[x2−σ2][p(x)]qdx= 0.
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Generalized Tsallis distribution

• We may generalize the Tsallis distr by replacing the 2nd constraint

by
R ∞
−∞[xα −σα][p(x)]qdx= 0. Then the distr becomes

p(x) =
1
Zq

[1+β(q−1)xα]1/(1−q)

• This is our starting point for modeling sea clutter.

• To model turbulent motions, Christian Beck (2000) obtainedthe

same distr. through a different approach, which is considerably more

complicated than our approach.
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Fitting sea clutter by Tsallis distribution

(Symbol: data; curve: Tsallis fit)
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• Data is ready. So what

is the challenge here?

• Data is highly nonsta-

tionary. It’s not very

meaningful to perform

distributional analysis

on original data.

• How about the differ-

enced data? It works!

• Parameters are helpful

for target detection.
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Introduction to
fractal & multifractal

• A part is (exactly or statisti-

cally) similar to another part,

or to the whole.

• Clouds; mountains; trees; etc.

(Images: not computer-made,

but photos of Jiu Zhai Gou)

• Power-law relation

— a straight line in a log-log

plot (scaling)

• Many (or possibly infinitely

many) power-law relations

— Multifractal.
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Cantor set
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The set consists of∞ of isolated points. Its measure and topological

dimension are both 0. Fractal dimension= ln2/ ln3.
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Fractional Brownian motion (fBm) BH(t)

• Gaussian process with mean 0 & stationary increments

• Variance:

E[(BH(t))2] = t2H

• Power spectral density

f−(2H+1)

• H: Hurst parameter.

1/2 < H < 1: long memory (long-range-dependence (LRD))

H = 1/2: standard Brownian motion

0 < H < 1/2: anti-persistence

• Applications to a wide range of problems (including Hollywood

movie making—fancy landscape)
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Examples of fBm processes with differentH
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Random walks and their analysis

• Remove the mean values from{x(i)} process, denote it as{u(i)}

• Random walk:y(n) = ∑n
i=1 u(i)

• Independentu(i)’s (a drunk)–no correlation:

E[y(m)2] = m·E[u(i)2] ∼ m

• Fluctuation analysis (FA):

F(2)(m) =
〈

|y(n+m)−y(n)|2
〉

∼ mζ(2)

Hurst parameterH = H(2) = ζ(2)/2

— H = 1/2: no or short-range correlation

— 0 < H < 1/2: anti-persistent long range correlation

— 1/2 < H < 1: persistent long range correlation
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The meaning of the Hurst parameter

• Increment process{x1,x2, · · · ,xn}: power spectral density (PSD)
f−(2H−1); autocorrelation function:r(k) ∼ k2H−2, as k→ ∞

• Random walk process{yn}, yn = ∑n
i=1 xi , PSD: f−(2H+1)

• Averaging the original seriesX over non-overlapping blocks of size
m to obtain:

X(m)
t = (Xtm−m+1 + · · ·+Xtm)/m, t ≥ 1, var(X(m)) = σ2m2H−2

whereσ2 is the variance of{x1,x2, · · · ,xn}
• The value ofH determines effectiveness of smoothing:

– H = 0.50,m= 100,var(X(m)) = σ2/100

– H = 0.75,m= 104, var(X(m)) = σ2/100

– H = 0.25,m≈ 21.5, var(X(m)) = σ2/100
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Structure-function–based multifractal analysis

• F(q)(m) = 〈|y(i +m)−y(i)|q〉 ∼ mζ(q) ?

q < 0: emphasizes small absolute increments ofy(i);

q > 0: emphasizes large absolute increments ofy(i)

• H(q) = ζ(q)/q

• Monofractal:ζ(q) linear inq (ζ(0) = 0);

H(q) constant

Multifractal: ζ(q) nonlinear inq;

H(q) varies withq

• Can extend to detrended multifractal and wavelet-based

multifractal analysis

— When analyzing real data, these are preferred!
(Gao et al.,Phys. Rev. E2006)

22



'

&

$

%

Target detection within sea clutter

• H(2) is much larger when the range bins hit a target

• Sea clutter data are multifractals, and that otherq values can also
robustly detect targets within sea clutter
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Accuracy of target detection across measurements

• HypothesisH0: sea clutter without target,H(2) < γ
HypothesisH1: sea clutter with target,H(2) > γ

• γ ≈ 0.185 yields a perfect classification for all datasets
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Modeling multifractals:
Cantor set with multifractal measure
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Cascade multifractals: construction rule

All r l ,m,1− r l ,m are governed by same pdfP(r).
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Multifractal scalings for cascade models

• The weights at the stageN, {wn,n = 1, ...,2N}, can be expressed as
wn = u1u2 · · ·uN, whereul , l = 1, ...,N, are eitherr i j or 1− r i j .

• Thus,{ui , i ≥ 1} are independent identically distributed (iid) random
variables (RV’s) having pdfP(r).

• Since lnwn is the sum of iid RV’s lnui , i = 1, ...,N, one readily sees
that lnwn follows a normal distribution, and thuswn follows a
log-normal distribution

• Multifractal scaling for the cascade model

Mq(ε) = ∑
i

wq
i ∼ ετ(q), Dq = τ(q)/(q−1)

• We can also prove that

τ(q) = qH(q)−1
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Stage-dependent multiplicative process model

Variance ofP(i,i+1)(r) varies from one stage to the next in a simple

manner: σ2
(i,i+1) = a·σ2

(i−1,i), a > 1
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Sea clutter amplitude and envelope data

Envelope is formed by picking up successive local maxima
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Multifractal features of sea clutter (Gao & Yao)

Original signal: scaling breaks for negativeq and small time scale; indicating the

smooth waveform between successive maxima does not follow the multifractal

scaling law.
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Log-normality of sea clutter envelope signals(Gao & Yao)

Original signal: slightly deviates from log-normal distribution —

due to the smooth waveform part.

Envelope signal: excellent log-normal distribution.

31



'

&

$

%

Cascade multifractal modeling of sea clutter

• (a,b) Sea clutter amplitude data without and with target.
(c,d) The corresponding simulated data.
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Target detection by cascade multifractal modeling
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Conclusions

• We have shown that sea clutter data are highly nonstationaryand
multiscaled

• We have developed new distributional analyses approaches to better
describe sea clutter

• We have developed structure-function based highly accurate (close to
100%) multifractal methods for detecting low observable targets
within sea clutter

• We have developed a cascade multifractal model for sea clutter,
which can simultaneously account for the distributional aswell as
correlation structure of sea clutter

• For more details on the theory, see Gao et al
Multiscale Analysis of Complex Time Series— Integration of

Chaos and Random Fractal Theory, and Beyond, Wiley, August,
2007.
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Some thoughts on reducing sea clutter from CoudSat data

• Extend the 1-D cascade multifractal model to 2-D and 3-D (after

each partition, one square becomes 4 squares, and one cube becomes

8 cubes)

• Identify important spatial scales associated with wave andturbulence

patterns on the sea surface; these scales are important elements in

multifractal modeling

• Estimate the Hurst parameter (and theH(q) spectrum) from spatial

sea clutter data; they may be of critical importance in designing the

best spatial smoothing algorithms

• Non-Gaussian sea clutter distribution may also be exploited to

improve spatial smoothing
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